Теория вероятностей. Часть 2.

В задачах по теории вероятностей, которые представлены в ЕГЭ номером №4,   кроме задач о выборе объектов из набора, встречаются задачи на подбрасывание монеты и о бросках кубика. Их сегодня мы и разберем.

Задачи о подбрасывании монеты

Задача 1. Симметричную монету бросают дважды. Найдите вероятность того, что решка выпадет ровно один раз.

Решение.

В таких задачах удобно выписать все возможные исходы, записывая их при помощи букв Р (решка) и О (орел). Так, исход ОР означает, что при первом броске выпал орел, а при втором – решка. В рассматриваемой задаче возможны 4 исхода: РР, РО, ОР, ОО. Благоприятствуют событию «решка выпадет ровно один раз» 2 исхода: РО и ОР. Искомая вероятность равна \frac {2}{4}=0,5.

Ответ: 0,5.

Задача 2. Симметричную монету бросают трижды, Найдите вероятность того, что орел выпадет ровно два раза.

Решение.

Всего возможны 8 исходов: РРР, РРО, РОР, РОО, ОРР, ОРО, ООР, ООО. Благоприятствуют событию «орёл выпадет ровно два раза» 3 исхода: РОО, ОРО, ООР. Искомая вероятность равна \frac {3}{8}=0,375.

Ответ: 0,375.

Задача 3. Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнет игру с мячом. Команда «Изумруд» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Изумруд» выиграет жребий ровно один раз.

Решение.

Эта задача аналогична предыдущей. Пусть каждый раз выпадение решки означает выигрыш жребия «Изумрудом» (такое предположение не влияет на вычисление вероятностей). Тогда возможны 8 исходов: РРР, РРО, РОР, РОО, ОРР, ОРО, ООР, ООО. Благоприятствуют событию «решка выпадет ровно один раз» 3 исхода: РОО,ОРО,ООР. Искомая вероятность равна    \frac {3}{8}=0,375.

Ответ: 0,375.

Задача 4. Симметричную монету бросают трижды. Найдите вероятность того, что наступит исход РОО (в первый раз выпадает решка, во второй и третий — орёл).

Решение.

Как и в предыдущих задачах, здесь имеется 8 исходов: РРР, РРО, РОР, РОО, ОРР, ОРО, ООР, ООО. Вероятность наступления исхода РОО равна \frac {1}{8}=0,125.

     Ответ: 0,125.

Задачи о бросках кубика 

Задача 5. Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «сумма очков равна 8»?

Решение.

Исходом будем считать пару чисел: очки при первом и втором броске. Тогда указанному событию благоприятствуют следующие исходы: 2 – 6, 3 – 5, 4 – 4, 5 – 3, 6 – 2. Их количество равно 5. Ответ: 5.

Задача 6. Одновременно бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 4 очка. Результат округлите до сотых.

Решение.

Исходом будем считать пару чисел: очки, выпавшие на первой и второй игральной кости. Всего имеется 36 равновозможных исходов (на первой кости число от 1 до 6, на второй – также число от 1 до 6).

Вообще, если бросают n  игральных костей (кубиков), то имеется 6^{n} равновозможных исходов. Столько же исходов получается, если один и тот же кубик бросают n раз подряд.

 Событию «в сумме выпало 4» благоприятствуют следующие исходы: 1 – 3, 2 – 2, 3 – 1. Их количество равно 3. Искомая вероятность равна \frac {3}{36}=\frac {1}{12}.

Для подсчёта приближённого значения дроби  удобно воспользоваться делением уголком. Таким образом, \frac {1}{12} приблизительно равна 0,083…, округлив до сотых имеем 0,08.

Ответ: 0,08

Задача 7. Одновременно бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 5 очков. Результат округлите до сотых.

Решение.

Исходом будем считать тройку чисел: очки, выпавшие на первой, второй и третьей игральной кости. Всего имеется 6^{3}=216 равновозможных исходов. Событию «в сумме выпало 5» благоприятствуют следующие исходы: 1–1–3, 1–3–1, 3–1–1, 1–2–2, 2–1–2, 2–2–1. Их количество равно 6. Искомая вероятность равна  \frac {6}{216}=\frac {1}{36}. Для подсчёта приближённого значения дроби удобно воспользоваться делением уголком. Приблизительно получаем 0,027…, округлив до сотых, имеем  0,03.

Ответ: 0,03.

Подведем итог

После изучения материала по решению простых задач по теории вероятностей рекомендую выполнить задачи для самостоятельного решения, которые мы публикуем на нашем канале Telegram. Вы также можете проверить правильность их выполнения, внеся свои ответы в предлагаемую форму.

Также рекомендую изучить «Задачи на вычисление» , «Площадь треугольника» и другие уроки по решению заданий ЕГЭ по математике, которые представлены на нашем канале Youtube. 

Спасибо, что поделились статьей в социальных сетях



Источник «Подготовка к ЕГЭ. Математика. Теория вероятностей». Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.